Применение высокоточных численных методов для исследования аттракторов динамических систем

Пчелинцев Александр Николаевич

Тамбовский государственный технический университет

Тамбов, 2021

Пчелинцев Александр Николаевич Нелинейные динамические системы

Рассмотрим автономную систему дифференциальных уравнений

$$\dot{X} = B_0 + B_1 X + \varphi(X), \tag{1}$$

где $X(t) = [x_1(t) \dots x_n(t)]^{\mathsf{T}}$ — векторная функция времени t со значениями в пространстве \mathbb{R}^n , $B_0 \in \mathbb{R}^n$ — заданный векторстолбец,

$$\varphi(X) = [\varphi_1(X) \ldots \varphi_n(X)]^\mathsf{T},$$

 $arphi_p(X)=\langle Q_pX,X
angle,$ B_1 и Q_p $(p=\overline{1,n})$ — матрицы (n imes n) действительных чисел.

Анализ современной литературы показал, что формулы общего решения систем вида (1) в классе каких-либо известных функций пока не найдено. Примеры систем с квадратичными нелинейностями

Система Лоренца

$$\begin{cases} \dot{x}_1 = \sigma(x_2 - x_1), \\ \dot{x}_2 = rx_1 - x_2 - x_1x_3, \\ \dot{x}_3 = x_1x_2 - bx_3. \end{cases}$$

Для данной системы матрицы имеют вид:

$$B_{0} = \mathbf{0}, \quad B_{1} = \begin{bmatrix} -\sigma & \sigma & 0 \\ r & -1 & 0 \\ 0 & 0 & -b \end{bmatrix}, \quad Q_{1} = \mathbf{0},$$
$$Q_{2} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad Q_{3} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

< ∃ →

э

Примеры систем с квадратичными нелинейностями

Система Чена

$$\begin{cases} \dot{x}_1 = a(x_2 - x_1), \\ \dot{x}_2 = (c - a)x_1 - x_1x_3 + cx_2, \\ \dot{x}_3 = x_1x_2 - bx_3, \end{cases}$$

Для данной системы матрицы имеют вид:

$$B_{0} = \mathbf{0}, \quad B_{1} = \begin{bmatrix} -a & a & 0 \\ c - a & c & 0 \\ 0 & 0 & -b \end{bmatrix}, \quad Q_{1} = \mathbf{0},$$
$$Q_{2} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad Q_{3} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

- Девять систем Джулиана Спротта статья Sprott J.C. Some simple chaotic flows // Physical Review E. 1994. Vol. 50. Iss. 2. R647.
- Примеры систем со скрытыми аттракторами статья Dudkowski D., Jafari S., Kapitaniak T., Kuznetsov N.V., Leonov G.A., Prasad A. Hidden attractors in dynamical systems // Physics Reports. 2016. Vol. 637. Iss. 3. PP. 1-50.
- Каноническая модель Гаузе-Лотки-Вольтерры для описания динамики последовательной памяти человека - статьи Afraimovich V., Gong X., Rabinovich M. Sequential memory: binding dynamics // Chaos. 2015. Vol. 25. 103118; Rabinovich M.I., Afraimovich V.S., Varona P. Heteroclinic binding // Dynamical Systems. 2010. Vol. 25. Iss. 3. PP. 433-442.
- Модель саморазвивающейся рыночной экономики книга Магницкий Н.А., Сидоров С.В. Новые методы хаотической динамики. – М.: Едиториал УРСС, 2004. – 320 с.
- Система Лоренца-Стенфло для описания динамики акустико-гравитационных волн в атмосфере Земли – статья Stenflo L. Generalized Lorenz equations for acoustic-gravity waves in the atmosphere // Physica Scripta. 1996. Vol. 53. Iss. 1. PP. 83-84.

3

Пусть

$$X(t) = \sum_{i=0}^{\infty} \Lambda_i t^i,$$

где $\Lambda_0 = X(0)$ – вектор значений начальных условий для системы (1), $\Lambda_i \in \mathbb{R}^n$.

$$\varphi_p(X) = \sum_{i=0}^{\infty} \Phi_{i,p} t^i, \ \Phi_{i,p} = \sum_{j=0}^{i} \langle Q_p \Lambda_j, \Lambda_{i-j} \rangle, \ p = \overline{1, n}.$$

Пусть

$$\Phi_i = \begin{bmatrix} \Phi_{i,1} & \dots & \Phi_{i,n} \end{bmatrix}^{\mathsf{T}}.$$

$$\Lambda_1 = B_0 + B_1 \Lambda_0 + \Phi_0.$$
 (2)

Рекуррентное соотношение при $i \ge 2$

$$\Lambda_i = \frac{B_1 \Lambda_{i-1} + \Phi_{i-1}}{i}.$$
(3)

$$h_1(\Lambda_0) = \|\Lambda_0\|, \ \mu = n \max_{p=\overline{1,n}} \|Q_p\|,$$
$$h_2(\Lambda_0) = \begin{cases} \|B_0\| + (\|B_1\| + 2\mu)h_1 + \mu h_1^2, \ \text{если} \ h_1 > 1, \\ \|B_0\| + \|B_1\| + \mu \text{ в противном случае.} \end{cases}$$

Ряды сходятся при $t\in(- au; au)$, где $au=1/h_2$. Выберем

$$0 < \Delta t < \tau$$

или

$$-\tau < \Delta t < 0.$$

Критерий окончания суммирования

$$\|\Lambda_i\| \, |\Delta t|^i < \varepsilon_p.$$

Lozi R., Pogonin V.A., <u>Pchelintsev A.N.</u> A new accurate numerical method of approximation of chaotic solutions of dynamical model equations with quadratic nonlinearities // Chaos, Solitons & Fractals. 2016. Vol. 91. PP. 108-114.

Алгоритм численного решения

- **3адать** значения машинного эпсилон ε_m и *way* (1 или -1).
- **2** Задать значения T, ε_p и $\Lambda_0 = X(0)$.
- **3** t := 0.
- Θ Вычислить значение Δt как функцию от Λ₀.
- $\bullet t := t + \Delta t.$
- Если t > T, то flag := 1; $\Delta t := \Delta t (t T)$ Иначе если t < T, то flag := 0Иначе flag := 1.

o
$$p := 1; i := 0; x := \Lambda_0.$$

- i := i + 1; p := p · way · Δt. Вычислить Λ_i по формуле (2) или (3).
- $2 x := x + \Lambda_i \cdot p.$
- $L := \|\Lambda_i\| \cdot |p|.$
- **Ф** Если $L > \varepsilon_p$, то перейти к шагу 8.
- Вывод Λ₀.
- 🕑 Если flag = 0, то перейти к шагу 4. 🚬

Положим, что

$$\Omega = [t_0; t_1] \cup [t_1; t_2] \cup \ldots \cup [t_{N-1}; t_N],$$

$$t_0 = 0, \ t_N = T,$$

$$\Delta t_l = t_l - t_{l-1},$$

 n_I – степень полинома, соответствующего моменту времени t_I , $I = \overline{1, N}$,

$$n_{\min} = \min_{l} n_{l}, \ n_{\max} = \max_{l} n_{l}, \ l_{\min} = \operatorname{ind\min}_{l} n_{l}, l_{\max} = \operatorname{ind\max}_{l} n_{l}, \ \Delta t_{\min} = \min_{l} \Delta t_{l}, \Delta t_{\max} = \max_{l} \Delta t_{l}, \ d_{\min} = \operatorname{ind\min}_{l} \Delta t_{l}, d_{\max} = \operatorname{ind\max}_{l} \Delta t_{l}.$$

2

御 🕨 🔸 문 🕨 🖉 👘 👘

N⁰	t	$x_1(t)$	$x_2(t)$	$x_3(t)$
1 2	0 3.695	-10.3391 -10.4283	-11.1003 -10.7454	23.8488 23.3929
3	8.411	-10.5177	-10.7434	23.5557
Nº	t	$\dot{x}_1(t)$	$\dot{x}_2(t)$	$\dot{x}_3(t)$
1	0	-26.6412	8.14097	43.2213
2	3.695	-11.0986	16.0749	41.8775
3	8.411	-7.89935	20.561	42.3287

Исходные тексты программы доступны по адресу https://github.com/alpchelintsev/chen_sources

Прямой проход по времени

Т	3.695	8.411
N	7549	16869
n _{min}	18	19
l _{min}	Ν	Ν
n _{max}	27	27
l _{max}	2304	2304
t _{Imin}	3.69487	8.41082
t _{Imax}	1.26107	1.26107
$\Delta t_{\rm min}$	0.000129384	0.000179493
d _{min}	I _{min}	l _{min}
$t_{d_{\min}}$	$t_{I_{\min}}$	t _{lmin}
Δt_{max}	0.00124324	0.00124324
d _{max}	2299	2299
$t_{d_{\max}}$	1.25485	1.25485

æ

Обратный проход по времени

-T	-3.695	-8.411
Ñ	7549	16869
\widehat{n}_{\min}	18	19
\widehat{I}_{\min}	Ñ	Ñ
\widehat{n}_{\max}	27	27
Î _{max}	5206	14526
$t_{\widehat{I}_{\min}}$	-3.69489	-8.41083
$t_{\widehat{I}_{max}}$	-2.38689	-7.10279
Δt_{\min}	-0.000109911	-0.000165672
\widehat{d}_{\min}	\widehat{I}_{min}	\widehat{I}_{min}
$t_{\widehat{d}_{\min}}$	$t_{\widehat{l}_{\min}}$	$t_{\widehat{I}_{\min}}$
Δt_{max}	-0.00124325	-0.00124325
\widehat{d}_{\max}	5252	14572,

Пчелинцев Александр Николаевич Нелинейные динамические системы

$$\begin{aligned} x_{1,0} &= -10.33913519761, \ x_{2,0} &= -11.10031188035, \\ x_{3,0} &= 23.84877914089. \end{aligned}$$

$$\varepsilon_p &= 10^{-53}, \ \varepsilon_m &= 2.54895 \cdot 10^{-57} \ (b_m &= 189). \end{aligned}$$

Такая точность обеспечивает совпадение всех знаков после запятой начальных условий при обратном проходе по времени.

$$N = \widehat{N}, \ t_{l_{\max}} + \left| t_{\widehat{l}_{\max}} \right| pprox T, \ d_{\max} + \widehat{d}_{\max} pprox N, \ t_{d_{\max}} + \left| t_{\widehat{d}_{\max}} \right| pprox T.$$

Lozi R., <u>Pchelintsev A.N.</u> A new reliable numerical method for computing chaotic solutions of dynamical systems: the Chen attractor case // International Journal of Bifurcation and Chaos. 2015. Vol. 25. Iss. 13. 1550187. 10 pp.

На рисунке $x = x_1$, $y = x_2$ и $z = x_3$.

「御▶▲臣▶▲臣▶ □ ○ ○ ○

$$\dot{x}_1 = \sigma(x_2 - x_1), \quad \dot{x}_2 = rx_1 - x_2 - x_1x_3, \quad \dot{x}_3 = x_1x_2 - bx_3,$$
$$x_1(t) = \sum_{i=0}^{\infty} \alpha_i t^i, \quad x_2(t) = \sum_{i=0}^{\infty} \beta_i t^i, \quad x_3(t) = \sum_{i=0}^{\infty} \gamma_i t^i.$$

Рекуррентные соотношения для вычисления коэффициентов:

$$\alpha_{i+1} = \frac{\sigma\left(\beta_i - \alpha_i\right)}{i+1}, \quad \beta_{i+1} = \frac{r\alpha_i - \beta_i - \sum_{j=0}^i \alpha_j \gamma_{i-j}}{i+1}, \quad \gamma_{i+1} = \frac{\sum_{j=0}^i \alpha_j \beta_{i-j} - b\gamma_i}{i+1},$$

где i = 0, 1, 2, Оценка области сходимости рядов:

 $h_1 = \max\{2\sigma, r+2h_2+1, b+2h_2+1\}, \ h_2 = \max\{|\alpha_0|, |\beta_0|, |\gamma_0|\}.$

Если $h_2 \ge 1$, то $h_3 = h_1 h_2$. Иначе $h_3 = \max\{2\sigma, r+2, b+1\}$. Ряды сходятся при $t \in (-\tau; \tau)$, где $\tau = 1/h_3$.

<u>Пчелинцев А.Н.</u> Численное и физическое моделирование динамики системы Лоренца // Сибирский журнал вычислительной математики. 2014. Т. 17. Вып. 2. С. 191-201.

$$\dot{x} = 1 + x^2, \ x(0) = 0.$$
 (4)

Имеет решение

$$x(t) = tg(t),$$

уравнением одной из асимптот которого является $t = \frac{\pi}{2}$. Как известно¹, эта функция может быть разложена в степенной ряд, сходящийся на полуинтервале $t \in \left[0; \frac{\pi}{2}\right)$. С другой стороны, для поиска решения задачи (4) можно использовать описанный выше метод. Получаемая область сходимости будет содержаться внутри полуинтервала $\left[0; \frac{\pi}{2}\right]$. Формулы для расчёта коэффициентов ряда

$$x(t) = \sum_{i=0}^{\infty} p_i t^i$$

имеют вид:

$$p_1 = 1 + p_0^2, \quad p_{i+1} = \frac{\sum_{j=0}^{i} p_j p_{i-j}}{i+1}, \quad i = 1, 2, 3, \dots$$
 (5)

Изначально в формуле (5) предполагается, что $p_0 = 0$, исходя из начального условия задачи (4). Описанным методом мы построим часть траектории. Части траектории сшиваются. При приближении к вертикальной асимптоте значение фазовой координаты x увеличивается, а оцениваемая величина длины интервала сходимости

$$\tau = \frac{1}{h_2(p_0)} = O\left(\frac{1}{p_0^2}\right),$$

уменьшается при $p_0
ightarrow \infty$, где

$$h_2(p_0) = \left\{egin{array}{ccc} 1+2|p_0|+p_0^2, & {
m если} \ |p_0|>1, \ 2 & {
m в противном \ случае.} \end{array}
ight.$$

Таким образом, численная схема никогда не перепрыгнет асимптоту $t = \frac{\pi}{2}$ и будет приближаться к ней сколь угодно близко.

В известной литературе² рассматривается только модификация метода Эйлера для таких систем.

² Жуковский Е.С. О параметрическом задании решения дифференциального уравнения и его приближенном построении // Известия высших учебных заведений. Математика. 1996. Вып. 4. С. 31-34.

Моделирование роста раковых опухолей

В 2016-ом году³ была предложена система с квадратичными нелинейностями для моделирования роста раковых опухолей

$$\begin{pmatrix} \dot{x}_1 = 2Nx_1 - x_1^2 - Hx_1x_3, \\ \dot{x}_2 = (4 - I)x_2 + 0.5x_1^2 - 0.14x_2^2 - 0.5Hx_2x_3 + 0.001x_3^2, \\ \dot{x}_3 = -Ix_3 + 0.07x_2^2 + 0.5Hx_2x_3 - 0.002x_3^2, \end{cases}$$
(6)

где параметры N — популяция нормальных клеток, H — популяция клеток-хозяинов паразита, I — популяция иммунных клеток (Т-лимфоциты и естественные киллеры); $x_1(t)$, $x_2(t)$ и $x_3(t)$ — популяции во времени t пролиферирующих раковых клеток в аваскулярной, сосудистой и метастазирующей фазах соответственно.

Далее при исследовании системы на отрезке времени [0; 27.327] было подобрано $b_m = 160$, $\varepsilon_m = 1.36846 \cdot 10^{-48}$ и $\varepsilon_p = 10^{-40}$.

³Llanos-Pérez J.A., Betancourt-Mar J.A., Cochob G., Mansilla R., Nieto-Villar J.M. Phase transitions in tumor growth: III vascular and metastasis behavior // Physica A: Statistical Mechanics and its Applications. 2016. Vol. 462. PP. 560-568.

Приведение системы к общему виду

Приведём систему (6) к общему виду (1) динамической системы:

$$\dot{X} = AX + \Phi(X),$$

где

$$\begin{split} X(t) &= [x_1(t) \ x_2(t) \ x_3(t)]^{\mathsf{T}}, \ \Phi(X) = [\varphi_1(X) \ \varphi_2(X) \ \varphi_3(X)]^{\mathsf{T}}, \\ \varphi_p(X) &= \langle Q_p X, X \rangle, \ p = \overline{1,3}, \ A = \begin{bmatrix} 2N & 0 & 0 \\ 0 & 4 - I & 0 \\ 0 & 0 & -I \end{bmatrix}, \\ Q_1 &= \begin{bmatrix} -1 & 0 & -H \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ Q_2 &= \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & -0.14 & -0.5H \\ 0 & 0 & 0.001 \end{bmatrix}, \\ Q_3 &= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0.07 & 0.5H \\ 0 & 0 & -0.002 \end{bmatrix}. \end{split}$$

Результаты вычислительного эксперимента

$$\rho(t) = \sqrt{(x_1(t) - x_1(t_0))^2 + (x_2(t) - x_2(t_0))^2 + (x_3(t) - x_3(t_0))^2}$$

Найдено предельное решение, близкое к периодическому, при N = 5, H = 3 и I = 0.7.

 $x_1(0) = 0.1450756817,$ $x_2(0) = 0.8395885828,$ $x_3(0) = 9.954786333.$

$$\begin{array}{l} \rho(t_0) \approx \rho(t_2) \approx \rho(t_4), \\ \rho(t_1) \approx \rho(t_3) \approx \rho(t_5), \\ t_2 - t_0 \approx t_4 - t_2 \approx t_3 - t_1 \approx \\ \approx t_5 - t_3 \approx 10.89 - \text{период}, \end{array}$$

n	tn	$x_1(t_n)$	$x_2(t_n)$	$x_3(t_n)$	$\rho(t_n)$
0	0	0.1450756817	0.8395885828	9.954786333	0
1	5.553	0.1201387594	0.7151506515	9.6198216985	0.358201
2	10.889	0.1434845476	0.8337896719	9.953662472	0.006117
3	16.439	0 1207485467	0.7178109534	9.6243463945	0.353004
4	21.778	0.1437352539	0.8342333601	9.9494643143	0.007668
5	27.327	0.118689978	0.7111230373	9.6323947777	0.348049

Пчелинцев Александр Николаевич

Нелинейные динамические системы

$$\varepsilon^{\{\mathsf{rk4}\}} = \sqrt{\left(x_1^{\{\mathsf{rk4}\}} - x_1(T)\right)^2 + \left(x_2^{\{\mathsf{rk4}\}} - x_2(T)\right)^2 + \left(x_3^{\{\mathsf{rk4}\}} - x_3(T)\right)^2},$$

где *T* – длина отрезка времени, где производится численное интегрирование. В нашем случае *T* = 27.327.

$\Delta t^{\{rk4\}}$	$\varepsilon^{\{rk4\}}$
0.05	0.0387658
0.01	$4.06488 \cdot 10^{-5}$
0.005	$2.40695 \cdot 10^{-6}$
0.001	$3.68753 \cdot 10^{-9}$

 $\Delta t^{\{\mathsf{rk4}\}}$ – шаг метода Рунге-Кутты.

<u>Pchelintsev A.N.</u> An accurate numerical method and algorithm for constructing solutions of chaotic systems // Journal of Applied Nonlinear Dynamics. 2020. Vol. 9. Iss. 2. PP. 207-221.

▲御▶ ▲国▶ ▲国▶ - 国 - のへで

Сравнение длин T отрезков интегрирования и точности ε_p для разных динамических систем.

Динамическая система	Т	ε_{p}
Система Лоренца	6.827	10^{-50}
Система Чена	8.411	10^{-53}
Система Спротта-Джафари ⁴	34	10^{-15}
Система (б)	27.327	10^{-40}

⁴ Jafari S., Sprott J.C., Nazarimehr F. Recent new examples of hidden attractors // The European Physical Journal Special Topics. 2015. Vol. 224. lss. 8. PP. 1469-1476: □ > < ᠿ > < ⊕ > < ⊕ >

Пусть $x_4(t)$, $x_5(t)$ и $x_6(t)$ – возмущения. Выполним процедуру линеаризации исходной системы:

$$\frac{\partial (AX + \Phi(X))}{\partial X} \begin{bmatrix} x_4 \\ x_5 \\ x_6 \end{bmatrix} =$$

$$= \begin{bmatrix} 2Nx_4 - 2x_1x_4 - Hx_3x_4 - Hx_1x_6 \\ x_1x_4 + (4 - I)x_5 - 0.28x_2x_5 - 0.5Hx_3x_5 - 0.5Hx_2x_6 + 0.002x_3x_6 \\ 0.14x_2x_5 + 0.5Hx_3x_5 - Ix_6 + 0.5Hx_2x_6 - 0.004x_3x_6 \end{bmatrix}$$

Вычисление показателей Ляпунова: расширение исходной системы

Расширим систему (б), введя в неё дополнительные фазовые координаты x4, x5 и x6. Тогда матрица A системы (1) для системы (6) имеет вид:

$$A = \begin{bmatrix} 2N & 0 & 0 & 0 & 0 & 0 \\ 0 & 4-I & 0 & 0 & 0 & 0 \\ 0 & 0 & -I & 0 & 0 & 0 \\ 0 & 0 & 0 & 2N & 0 & 0 \\ 0 & 0 & 0 & 0 & 4-I & 0 \\ 0 & 0 & 0 & 0 & 0 & -I \end{bmatrix}$$

,

матрицы Q_1 , Q_2 и Q_3 будут содержать нули на новых местах,

$$\begin{aligned} x_{1}(t) &= \sum_{i=0}^{\infty} \alpha_{1,i} t^{i}, \ x_{2}(t) = \sum_{i=0}^{\infty} \alpha_{2,i} t^{i}, \ x_{3}(t) = \sum_{i=0}^{\infty} \alpha_{3,i} t^{i}, \\ x_{4}(t) &= \sum_{i=0}^{\infty} \alpha_{4,i} t^{i}, \ x_{5}(t) = \sum_{i=0}^{\infty} \alpha_{5,i} t^{i}, \ x_{6}(t) = \sum_{i=0}^{\infty} \alpha_{6,i} t^{i}, \\ \alpha_{1,i+1} &= \frac{2N\alpha_{1,i} - r_{1,i} - Hr_{4,i}}{i+1}, \\ \alpha_{2,i+1} &= \frac{(4-I)\alpha_{2,i} + 0.5r_{1,i} - 0.14r_{2,i} - 0.5Hr_{5,i} + 0.001r_{3,i}}{i+1}, \\ \alpha_{3,i+1} &= \frac{-I\alpha_{3,i} + 0.07r_{2,i} + 0.5Hr_{5,i} - 0.002r_{3,i}}{i+1}, \\ \alpha_{4,i+1} &= \frac{2N\alpha_{4,i} - 2r_{6,i} - Hr_{7,i} - Hr_{8,i}}{i+1}, \\ \alpha_{5,i+1} &= \frac{(4-I)\alpha_{5,i} + r_{6,i} - 0.28r_{9,i} - 0.5Hr_{10,i} - 0.5Hr_{11,i} + 0.002r_{12,i}}{i+1}, \\ \alpha_{6,i+1} &= \frac{-I\alpha_{6,i} + 0.14r_{9,i} + 0.5Hr_{10,i} + 0.5Hr_{11,i} - 0.004r_{12,i}}{i+1}, \quad i = 0, 1, 2, \dots \end{aligned}$$

$$\begin{aligned} x_1^2 &= x_1 \cdot x_1 \ \Rightarrow \ r_{1,i} = \sum_{j=0}^i \alpha_{1,j} \alpha_{1,i-j}, \ x_2^2 \ \Rightarrow \ r_{2,i} = \sum_{j=0}^i \alpha_{2,j} \alpha_{2,i-j}, \\ x_3^2 \ \Rightarrow \ r_{3,i} &= \sum_{j=0}^i \alpha_{3,j} \alpha_{3,i-j}, \ x_1 x_3 \ \Rightarrow \ r_{4,i} = \sum_{j=0}^i \alpha_{1,j} \alpha_{3,i-j}, \\ x_2 x_3 \ \Rightarrow \ r_{5,i} &= \sum_{j=0}^i \alpha_{2,j} \alpha_{3,i-j}, \ r_{6,i} = \sum_{j=0}^i \alpha_{1,j} \alpha_{4,i-j}, \\ r_{7,i} &= \sum_{j=0}^i \alpha_{3,j} \alpha_{4,i-j}, \ r_{8,i} = \sum_{j=0}^i \alpha_{1,j} \alpha_{6,i-j}, \ r_{9,i} = \sum_{j=0}^i \alpha_{2,j} \alpha_{5,i-j}, \\ r_{10,i} &= \sum_{j=0}^i \alpha_{3,j} \alpha_{5,i-j}, \ r_{11,i} = \sum_{j=0}^i \alpha_{2,j} \alpha_{6,i-j}, \ r_{12,i} = \sum_{j=0}^i \alpha_{3,j} \alpha_{6,i-j}. \end{aligned}$$

문어 문

Для
$$I \ge 0, H > 1$$
 и $N > 0$
 $||A|| = ||A||_1 = \max\{2N, |4 - I|, I\}, ||Q_1|| = ||Q_1||_1 = H,$
 $||Q_2|| = ||Q_2||_1 = 0.5H + 0.001, ||Q_3|| = ||Q_3||_1 = 0.5H + 0.002,$
 $||Q_4|| = ||Q_4||_1 = H + 2,$
 $||Q_5|| = ||Q_5||_1 = \max\{0.5H + 0.002, 1\},$
 $||Q_6|| = ||Q_6||_1 = 0.5H + 0.14,$
 $\mu = 6 \max_{p=1,6} ||Q_p|| = 6(H + 2),$
 $h_1 = \sum_{p=1}^{6} |\alpha_{p,0}|, h_2 = \begin{cases} \mu h_1^2 + (||A|| + 2\mu)h_1, \text{ если } h_1 > 1, \\ ||A|| + \mu \text{ в противном случае,} \end{cases}$
 $\tau = \frac{1}{h_2(\alpha_{1,0}, \alpha_{2,0}, \alpha_{3,0}, \alpha_{4,0}, \alpha_{5,0}, \alpha_{6,0})},$
 $t \in [0; \tau) - pяды (7) \operatorname{сходятся.}$

- Разделить отрезок времени [0; T] на отрезки длиной *θ* = T/M, M – их количество, котрое задаётся;
- **3** Пусть $Y^{(k)} = \left[\alpha_{1,0}^{(k)} \alpha_{2,0}^{(k)} \alpha_{3,0}^{(k)} \right], \ Z_{(1)}^{(k)} = \left[\alpha_{4,0}^{(k,1)} \alpha_{5,0}^{(k,1)} \alpha_{6,0}^{(k,1)} \right],$ где $k = \overline{0, M}$. Аналогично введём два других вектора $Z_{(2)}^{(k)}$ и $Z_{(3)}^{(k)}$;
- Задать значения компонентов вектора начальных условий Y⁽⁰⁾ исследуемого решения системы (6). Задать Z⁽⁰⁾₍₁₎, Z⁽⁰⁾₍₂₎ и Z⁽⁰⁾₍₃₎ ≠ 0;
 к := 0, λ₁ := 0, λ₂ := 0, λ₃ := 0;
 Если k ≠ 0, то λ₁ := λ₁ + ln |Z^(k)₍₁₎|, λ₂ := λ₂ + ln |Z^(k)₍₂₎|, λ₃ := λ₃ + ln |Z^(k)₍₃₎|;

Выполнить нормализацию

$$Z_{(1)}^{(k)} := \frac{Z_{(1)}^{(k)}}{\left| Z_{(1)}^{(k)} \right|};$$

$$a^{(k)} := \left\langle Z^{(k)}_{(2)}, Z^{(k)}_{(1)} \right\rangle, \ Z^{(k)}_{(2)} := Z^{(k)}_{(2)} - a^{(k)} Z^{(k)}_{(1)};$$

Выполнить нормализацию

$$Z_{(2)}^{(k)} := \frac{Z_{(2)}^{(k)}}{\left| Z_{(2)}^{(k)} \right|};$$

Вычислить

$$b^{(k)} := \left\langle Z_{(3)}^{(k)}, Z_{(1)}^{(k)} \right\rangle, \ c^{(k)} := \left\langle Z_{(3)}^{(k)}, Z_{(2)}^{(k)} \right\rangle,$$
$$Z_{(3)}^{(k)} := Z_{(3)}^{(k)} - b^{(k)} Z_{(1)}^{(k)} - c^{(k)} Z_{(2)}^{(k)};$$

Выполнить нормализацию

$$Z_{(3)}^{(k)} := \frac{Z_{(3)}^{(k)}}{\left| Z_{(3)}^{(k)} \right|};$$

Всли k ≠ M, то построить три приближённых решения расширенной системы (6) на отрезке времени [0, θ], следуя описанному алгоритму в прямом времени. В данном случае, начальные условия X^(k)₍₁₎(0), X^(k)₍₂₎(0) and X^(k)₍₃₎(0) на k-ой итерации формируются как

$$X_{(m)}^{(k)}(0) = \left[Y^{(k)} Z_{(m)}^{(k)}\right]^{\mathsf{T}}, \ m = \overline{1,3}.$$

Первые три компоненты вектора $X_{(m)}^{(k)}(\theta)$ в каждом по m полученном приближённом решении одинаковы. Записать их в вектор $Y^{(k+1)}$ на соответствующие позиции, остальные компоненты записать в $Z_{(m)}^{(k+1)}$;

문어 문

Результаты вычислений показателей Ляпунова

Группы начальных значений $Z_{(m)}^{(0)}$ <u>до нормализации</u> для линеаризованной системы дифференциальных уравнений.

Номер группы	$Z_{(1)}^{(0)}$	$Z_{(2)}^{(0)}$	$Z_{(3)}^{(0)}$
	$\alpha_{4,0}^{(0,1)} = 5,$	$\alpha_{4,0}^{(0,2)} = 10,$	$\alpha_{4,0}^{(0,3)} = 8,$
ļ	$\alpha_{5,0}^{(0,1)} = 7,$	$\alpha_{5,0}^{(0,2)} = -1,$	$\alpha_{5,0}^{(0,3)} = 6,$
	$lpha_{6,0}^{(0,1)} = 13$	$lpha_{6,0}^{(0,2)} = 11$	$lpha_{6,0}^{(0,3)} = 9$
	$\alpha_{4,0}^{(0,1)} = -6,$	$\alpha_{4,0}^{(0,2)} = 63,$	$\alpha_{4,0}^{(0,3)} = 31,$
l II	$\alpha_{5,0}^{(0,1)} = 13,$	$\alpha_{5,0}^{(0,2)} = 1,$	$\alpha_{5,0}^{(0,3)} = -7,$
	$\alpha_{6,0}^{(0,1)} = 5$	$\alpha_{6,0}^{(0,2)} = -17$	$lpha_{6,0}^{(0,3)} = 19$
	$\alpha_{4,0}^{(0,1)} = 1,$	$\alpha_{4,0}^{(0,2)} = 7,$	$\alpha_{4,0}^{(0,3)} = -40,$
	$\alpha_{5,0}^{(0,1)} = -4,$	$\alpha_{5,0}^{(0,2)} = -13,$	$\alpha_{5,0}^{(0,3)} = 51,$
	$lpha_{6,0}^{(0,1)} = 75$	$\alpha_{6,0}^{(0,2)} = 11$	$lpha_{{f 6},{f 0}}^{({f 0},{f 3})}={f 3}{f 9}$
	$\alpha_{4,0}^{(0,1)} = 1,$	$\alpha_{4,0}^{(0,2)} = 1,$	$\alpha_{4,0}^{(0,3)} = 29,$
IV	$\alpha_{5,0}^{(0,1)} = 1,$	$\alpha_{5,0}^{(0,2)} = -37,$	$\alpha_{5,0}^{(0,3)} = -3,$
	$\alpha_{6,0}^{(0,1)} = 2$	$\alpha_{6,0}^{(0,2)} = 11$	$\alpha_{6,0}^{(0,3)} = 5$

◆□ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Оценка показателей Ляпунова и размерности Каплана-Йорке для полученного периодического решения.

Номер группы	λ_1	λ_2	λ_3	D _{KY}
I	0.0233993	0.0172255	-2.15924	2.0188
II	0.0433011	0.00520866	-2.16712	2.0224
	0.0159841	-0.0156199	-2.11898	2.0233
IV	0.018629	-0.0180543	-2.11919	2.0318

<u>Pchelintsev A.N.</u> An accurate numerical method and algorithm for constructing solutions of chaotic systems // Journal of Applied Nonlinear Dynamics. 2020. Vol. 9. Iss. 2. PP. 207-221.

Случай кубической нелинейности: уравнение Дуффинга

$$\ddot{x} + \delta \dot{x} + \alpha x + \beta x^{3} = \gamma \cos(\omega t + t_{0}),$$

$$x(0) = p_{0}, \quad \dot{x}(0) = p_{1}.$$

$$x(t) = \sum_{i=0}^{\infty} p_{i} t^{i},$$
(8)

$$u_{0} = 1, \quad u_{1} = \frac{\omega u_{0}}{1}, \quad u_{2} = \frac{\omega u_{1}}{2}, \dots, \quad u_{i} = \frac{\omega u_{i-1}}{i}, \dots$$

$$p_{i+2} = -\frac{\delta p_{i+1}}{i+2} - \frac{\beta \sum_{j=0}^{i} p_{i-j} \sum_{k=0}^{j} p_{k} p_{j-k}}{(i+1)(i+2)} + \frac{\gamma u_{i} \cos\left(\omega t_{0} + \frac{\pi i}{2}\right)}{(i+1)(i+2)},$$

$$i = 0, 1, 2, \dots$$

Pchelintsev A.N., Ahmad S. Solution of the Duffing equation by the power series method // Transactions of the TSTU. 2020. Vol. 26. Iss. 1. PP. 118-123. Случай кубической нелинейности: уравнение Дуффинга

Поскольку

$$\lim_{i\to\infty}\frac{\omega^i}{i!}=0,$$

то существует такое значение $i=i^*$, что для любых $i>i^*$ имеет место неравенство $rac{\omega^i}{i!} < 1.$

Введём обозначения

$$N_{\omega} = \max_{i=\overline{0},i^*} rac{\omega^i}{i!}, \ rac{\omega^0}{0!} = 1,$$

$$\begin{split} h_1 &= \max\{|p_0|, |p_1|, 1\}, \ h_2 &= \delta + \beta \left(3h_1^2 + 3h_1 + 1 \right) + \gamma N_\omega + 1, \\ h &= h_1 h_2. \end{split}$$

Доказана теорема: ряд (8) сходится при $t \in \left(-\frac{1}{h}; \frac{1}{h}\right)$.

$$\begin{aligned} x_{1}(t) &\approx \tilde{x}_{1}(t) = x_{1,0} + \sum_{i=1}^{n} \left(c_{1,i} \cos(i\omega t) + s_{1,i} \sin(i\omega t) \right), \\ x_{2}(t) &\approx \tilde{x}_{2}(t) = x_{2,0} + \sum_{i=1}^{h} \left(c_{2,i} \cos(i\omega t) + s_{2,i} \sin(i\omega t) \right), \end{aligned}$$

$$x_3(t) \approx \tilde{x}_3(t) = x_{3,0} + \sum_{i=1}^n (c_{3,i} \cos(i\omega t) + s_{3,i} \sin(i\omega t)),$$

где *h* — заданное количество гармоник. В силу правой части системы Лоренца составим невязки

$$\begin{split} \delta_1(t) &= \tilde{x}'_1(t) - \sigma[\tilde{x}_2(t) - \tilde{x}_1(t)], \\ \delta_2(t) &= \tilde{x}'_2(t) - [r\tilde{x}_1(t) - \tilde{x}_2(t) - \tilde{x}_1(t)\tilde{x}_3(t)], \\ \delta_3(t) &= \tilde{x}'_3(t) - [\tilde{x}_1(t)\tilde{x}_2(t) - b\tilde{x}_3(t)], \end{split}$$

где штрихом переобозначена производная функции по времени.

<u>Pchelintsev A.N.</u> A numerical-analytical method for constructing periodic soluti of the Lorenz system // Differencialnie Uravnenia i Protsesy Upravlenia. 2020. Iss. 4. PP. 59-75.

- Продифференцировать по времени соответствующий тригонометрический полином.
- Где имеются произведения фазовых координат, перемножить соответствующие тригонометрические полиномы, преобразовав при этом произведения тригонометрических функций в суммы.
- Привести подобные слагаемые для каждой функции cos() и sin() с соответствующим аргументом.
- Отсечь от полученной невязки гармоники более высокого порядка.
- Приравнять полученную невязку к нулю, т.е. коэффициенты при ее гармониках.

Если собрать в единое целое найденные алгебраические уравнения для каждой невязки, то получим пока ещё незамкнутую систему нелинейных уравнений относительно неизвестных амплитуд $c_{1,i}$, $s_{1,i}$, $c_{2,i}$, $s_{2,i}$, $c_{3,i}$ и $s_{3,i}$ ($i = \overline{1, h}$), постоянных членов $x_{1,0}$, $x_{2,0}$ и $x_{3,0}$ и циклической частоты ω . Количество неизвестных в системе равно 6h + 4, а уравнений – на единицу меньше.

Известно⁵, что искомые циклы пересекают плоскость, проходящую через положения равновесия системы Лоренца

$$O_1\left(-\sqrt{b(r-1)}, -\sqrt{b(r-1)}, r-1
ight), O_2\left(\sqrt{b(r-1)}, \sqrt{b(r-1)}, r-1
ight)$$

и параллельную плоскости $x_1 O x_2$ (сечение Пуанкаре). Таким образом, третья координата в начальном условии для искомых циклов равна величине r-1, откуда $\tilde{x}_3(0) = r-1$. Тогда дополнительное уравнение системы имеет вид:

$$x_{3,0} + \sum_{i=1}^{h} c_{3,i} - 27 = 0.$$

⁵Galias Z., Tucker W. Validated study of the existence of short cycles for chaotic systems using symbolic dynamics and interval tools // International Journal of Bifurcation and Chaos. 2011. Vol. 21. Iss. 2. PP. 551-563.

Применяя несложные преобразования, можно получить следующую систему алгебраических уравнений (далее запишем её без знака системы, т.к. мы указываем общий вид уравнений для каждого номера $i = \overline{1, h}$):

$$\begin{aligned} x_{3,0} + \sum_{i=1}^{h} c_{3,i} - 27 &= 0, \\ i\omega s_{1,i} - 10 c_{2,i} + 10 c_{1,i} &= 0 \\ -i\omega c_{1,i} - 10 s_{2,i} + 10 s_{1,i} &= 0 \\ x_{1,0} - x_{2,0} &= 0, \end{aligned}$$

Система нелинейных алгебраических уравнений

$$i\omega s_{2,i} - 28c_{1,i} + c_{2,i} + x_{1,0}c_{3,i} + c_{1,i}x_{3,0} + \frac{1}{2}\sum_{m=1}^{h-i} (c_{1,m}c_{3,m+i} + s_{1,m}s_{3,m+i}) + \frac{1}{2}\sum_{m=1}^{i-1} (c_{1,m}c_{3,i-m} - s_{1,m}s_{3,i-m}) + \frac{1}{2}\sum_{m=i+1}^{h} (c_{1,m}c_{3,m-i} + s_{1,m}s_{3,m-i}) = 0,$$

$$-i\omega c_{2,i} - 28s_{1,i} + s_{2,i} + x_{1,0}s_{3,i} + s_{1,i}x_{3,0} + \frac{1}{2}\sum_{m=1}^{h-i} (c_{1,m}s_{3,m+i} - s_{1,m}c_{3,m+i}) + \frac{1}{2}\sum_{m=1}^{h-i} (c_{1,m}s_{3,m+i}) + \frac{1}{2}\sum_{m=1}^{h-i} (c_{1,m}s_{3,m+i}) + \frac{1}{2}\sum_{m=1}^{h-i} (c_{1,m}s_{3,m+i}) + \frac{1}{2}\sum_{m=1}^{h-$$

$$+\frac{1}{2}\sum_{m=1}^{i-1}(c_{1,m}s_{3,i-m}+s_{1,m}c_{3,i-m})+\frac{1}{2}\sum_{m=i+1}^{h}(-c_{1,m}s_{3,m-i}+s_{1,m}c_{3,m-i})=0,$$

$$-28x_{1,0} + x_{2,0} + x_{1,0}x_{3,0} + \frac{1}{2}\sum_{m=1}^{h} (c_{1,m}c_{3,m} + s_{1,m}s_{3,m}) = 0,$$

글▶ 글

Система нелинейных алгебраических уравнений

$$\begin{split} &i\omega s_{\mathbf{3},i} - x_{\mathbf{1},\mathbf{0}}c_{\mathbf{2},i} - c_{\mathbf{1},i}x_{\mathbf{2},\mathbf{0}} - \frac{1}{2}\sum_{m=1}^{h-i} \left(c_{\mathbf{1},m}c_{\mathbf{2},m+i} + s_{\mathbf{1},m}s_{\mathbf{2},m+i} \right) - \\ &- \frac{1}{2}\sum_{m=1}^{i-1} \left(c_{\mathbf{1},m}c_{\mathbf{2},i-m} - s_{\mathbf{1},m}s_{\mathbf{2},i-m} \right) - \frac{1}{2}\sum_{m=i+1}^{h} \left(c_{\mathbf{1},m}c_{\mathbf{2},m-i} + s_{\mathbf{1},m}s_{\mathbf{2},m-i} \right) + \frac{8}{3}c_{\mathbf{3},i} = 0, \end{split}$$

$$\begin{aligned} &-i\omega c_{\mathbf{3},i} - x_{\mathbf{1},\mathbf{0}} s_{\mathbf{2},i} - s_{\mathbf{1},i} x_{\mathbf{2},\mathbf{0}} - \frac{1}{2} \sum_{m=1}^{h-i} \left(c_{\mathbf{1},m} s_{\mathbf{2},m+i} - s_{\mathbf{1},m} c_{\mathbf{2},m+i} \right) - \\ &- \frac{1}{2} \sum_{m=1}^{i-1} \left(c_{\mathbf{1},m} s_{\mathbf{2},i-m} + s_{\mathbf{1},m} c_{\mathbf{2},i-m} \right) - \frac{1}{2} \sum_{m=i+1}^{h} \left(-c_{\mathbf{1},m} s_{\mathbf{2},m-i} + s_{\mathbf{1},m} c_{\mathbf{2},m-i} \right) + \frac{8}{3} s_{\mathbf{3},i} = 0, \end{aligned}$$

$$-x_{1,0}x_{2,0}-\frac{1}{2}\sum_{m=1}^{h}(c_{1,m}c_{2,m}+s_{1,m}s_{2,m})+\frac{8}{3}x_{3,0}=0.$$

Пчелинцев Александр Николаевич Нелинейные динамические системы

'문⊁ '문

В результате многочисленных вычислительных экспериментов было подобрано начальное приближение для циклической частоты, постоянных членов и амплитуд при $h = h_1 = 5$:

$$\omega = 4, \ x_{1,0} = x_{2,0} = x_{3,0} = 0, \ c_{1,i} = -1, \ i = \overline{1,5}, \ s_{1,j} = 0, \ j = 1, 3, 4, 5, \ s_{1,2} = 1.$$

Данный результат замечателен тем, что метод Ньютона сходится к решению, отличному от положений равновесия. Поэтому для улучшения точности приближенного периодического решения мы рассматриваем систему алгебраических уравнений для значения h, равного некоторому $h_2 > h_1$. Полученное численное решение системы при $h = h_1$ берётся как начальное приближение для амплитуд с индексами $i \leq h_1$ у системы с $h = h_2$, а значения начального приближения для амплитуд с индексами $i > h_1$ полагаются равными нулю.

При h = 35 и с точностью метода Ньютона, равной 10^{-8} , было получено следующее приближение к периодическому решению: значение периода получается равным T = 1.558652210, начальное условие –

 $\tilde{x}_1(0) = -2.147367631, \ \tilde{x}_2(0) = 2.078048211, \ \tilde{x}_3(0) = 27.$

Данные начальные значения были проверены на периоде в компьютерной программе, реализующей численное интегрирование системы Лоренца описанным выше методом с точностью оценки общего члена ряда 10^{-25} , 100 бит под мантиссу вещественного числа и машинным эпсилон $1.57772 \cdot 10^{-30}$. При таких параметрах метода приближённые значения фазовых координат, полученные с помощью численного интегрирования, были также проверены тем же численным методом, но в обратном времени. Значения в обратном времени совпадают с приведёнными до 9-ого знака включительно после точки. Результирующие же значения $x_1(T)$, $x_2(T)$ и $x_3(T)$ совпадают с приведёнными до 8-ого знака включительно.

(日)((日)((日))(日)(日)

Цикл, полученный методом гармонического баланса

Исходные тексты программы доступны по адресу https://github.com/alpchelintsev/periodic_sols (со) (Э) (Э) (Э) (Э) (Э)

периодической правой частью

На практике часто возникает задача построения периодических решений нормальной системы обыкновенных дифференциальных уравнений вида

$$\dot{x} = f(t, x), \quad t \in \mathbb{R},$$
(9)

где функция $f:\mathbb{R} imes\mathbb{R}^n o\mathbb{R}^n$ представляет собой сумму

$$f(t,x) = \varphi(x) + h(t)$$

многомерного многочлена $\varphi(x)$ и тригонометрического полинома h(t), являющегося *T*-периодической векторной функцией.

Пусть известно, что система (9) имеет единственное T-периодическое решение $x^*(t)$. Примерами систем, имеющих единственное периодическое решение, являются системы с конвергенцией. Рассмотрим один класс таких систем, для которого удалось предложить способ построения приближения к решению $x^*(t)$. Пусть C^* – вектор, для которого

$$x^*(0)=C^*.$$

Условия, накладываемые на функцию f

1. Пусть $S_r \subset \mathbb{R}^n$ – замкнутый шар радиуса r, содержащий значения решения $x^*(t)$, S_R – замкнутый шар радиуса R, причем $S_r \subset S_R$, и существует такое положительное число l < 1/(2T), что для любых $p, q \in S_R$ имеет место неравенство

$$|\varphi(p) - \varphi(q)| \leq l|p-q|.$$

2. Существует такое положительное число M < (R-r)/(2T), что для всех $x \in S_R$ и любых $t \in [0; T]$ выполняется неравенство

$$|f(t,x)|\leq M.$$

Последовательные приближения, определяемые формулами

 $y_0(t, C) \equiv C,$

$$y_{m+1}(t, C) = C + \int_{0}^{t} \left[f(s, y_{m}(s, C)) - \frac{1}{\tau} \int_{0}^{T} f(\tau, y_{m}(\tau, C)) d\tau \right] ds$$
(10)

для любого $C \in S_r$ сходятся равномерно для всех $t \in [0; T]$ к некоторой периодической функции y(t, C). Причем, если выбрать $C = C^*$, то окажется, что

$$y(t,C^*)=x^*(t).$$

<u>Pchelintsev A.N.</u> Construction of periodic solutions of one class nonautonomous systems of differential equations // Journal of Applied Mathematics and Physics. 2013. Vol. 1. Iss. 3. PP. 1-4. Исходя из формулы (10), каждая итерация вычисляется в символьной форме. При этом после преобразований тригонометрических функций под интегралом всегда можно получить тригонометрический полином с нулевым средним интегральным значением. Аналитическая форма представления приближения к периодическому решению удобна тем, что дает возможность провести анализ гармоник, составляющих это приближение. После вычисления очередной итерации строится функция

$$\theta_m(C) = \left| \int_0^T f(\tau, y_m(\tau, C)) d\tau \right|^2,$$

минимум которой и даст приближение к вектору С*.

В качестве примера была рассмотрена нелинейная система второго порядка с конвергенцией вида (9), где

$$x(t) = \begin{bmatrix} \xi(t) \\ \eta(t) \end{bmatrix}, \ \varphi(x) = \begin{bmatrix} \eta - Q(\xi) \\ -g(\xi) \end{bmatrix}, \ h(t) = \begin{bmatrix} 1/2400 \\ 0 \end{bmatrix} \cdot \sin(24t),$$

где $Q(\xi) = 0,01\xi(1+2\xi^2/3), g(\xi) = 0,03\xi$. Обнаружено, что на первой и второй итерациях значения найденных приближений к вектору C^* одинаковы, и

$$\mathcal{C}^*\simeq \left[egin{array}{c} -1/57600 \ 0 \end{array}
ight].$$

В.А. Плиссом⁶ доказаны теоремы, позволяющие получить значение радиуса *г* вложенного шара;

$$r = \frac{\sqrt{7}}{30}, R = 0.5.$$

⁶Плисс В.А. Нелокальные проблемы теории колебаний. — М.,Л.« Наука, ₫964...**—367 с.** ≣ → 🖉 🔗 ९. 🤆

СПАСИБО ЗА ВНИМАНИЕ!

Пчелинцев Александр Николаевич Нелинейные динамические системы

3) J